

FEATURES

- · Package type: leaded
- Package form: TO-18
- Dimensions (in mm): \varnothing 4.7
- Peak wavelength: $\lambda_p = 875 \text{ nm}$
- · High reliability
- · High radiant power
- High radiant intensity
- Angle of half intensity: $\phi = \pm 12^{\circ}$
- · Low forward voltage
- Suitable for high pulse current operation
- · Good spectral matching with Si photodetectors
- Lead (Pb)-free component in accordance with RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

· Radiation source near infrared range

DESCRIPTION

TSTA7300 is an infrared, 875 nm emitting diode in GaAlAs technology in a hermetically sealed TO-18 package with lens.

PRODUCT SUMMARY

COMPONENT	l _e (mW/sr)	φ (deg)	λ Ρ (nm)	t _r (ns)	
TSTA7300	20	± 12	875	600	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
TSTA7300	Bulk	MOQ: 1000 pcs, 1000 pcs/bulk	TO-18		

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		lF	100	mA	
Peak forward current	t_p/T = 0.5, $t_p \le 100 \ \mu s$	I _{FM}	200	mA	
Surge forward current	$t_p \leq 100\mu s$	I _{FSM}	2.5	A	
Power dissipation		Pv	180	mW	
	$T_{case} \le 25 \ ^\circ C$	Pv	500	mW	
Junction temperature		Tj	100	°C	
Storage temperature range		Tstg	- 55 to + 100	°C	
Thermal resistance junction/ambient	leads not soldered	R _{thJA}	450	K/W	
Thermal resistance junction/case	leads not soldered	RthJC	150	K/W	

Note

Tamb = 25 °C, unless otherwise specified

PACKAGE DIMENSIONS

NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm(.010") unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I_F = 100 mA, $t_p \le 20 \text{ ms}$	V _F		1.4	1.8	V
Breakdown voltage	I _R = 100 μA	V(BR)	5			V
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	Cj		20		pF
Radiant intensity	I_F = 100 mA, $t_p \le 20 \text{ ms}$	l _e	10	20	50	mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p \leq 20 \text{ ms}$	фе		10		mW
Temperature coefficient of ϕ_e	I _F = 100 mA	TKφe		-0.7		%/K
Angle of half intensity		φ		± 12		deg
Peak wavelength	I _F = 100 mA	λρ		875		nm
Spectral bandwidth	I _F = 100 mA	Δλ		80		nm
Rise time	I _F = 100 mA	tr		600		ns
	$I_{F} = 1.5 \text{ A}, t_{p}/T = 0.01, t_{p} \le 10 \mu \text{s}$	tr		300		ns
Virtual source diameter		d		1		mm

Note

T_{amb} = 25 °C, unless otherwise specified

BASIC CHARACTERISTICS

Tamb = 25 °C, unless otherwise specified

Fig. 3 - Pulse Forward Current vs. Pulse Duration

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Relative Forward Voltage vs. Ambient Temperature

Fig. 6 - Radiant Intensity vs. Forward Current

Fig. 7 - Radiant Power vs. Forward Current

Fig. 8 - Rel. Radiant Intensity/Power vs. Ambient Temperature

Fig. 9 - Relative Radiant Power vs. Wavelength

Fig. 10 - Relative Radiant Intensity vs. Angular Displacement

Packing Quantity Specification

- 1. 1000Pcs/1Bag,10Bag/1Box
- 2. 4Boxes/1Carton

Label Form Specification

- · PRODUCT: Part Number
- · CODE NO.: Product Serial Number
- · QTY: Packing Quantity
- · LOT No: Lot Number
- · REMARKS:Remarks

Notes

Lead Forming

1. During lead formation, the leads should be bent at a point at least 3mm from the base of the epoxy bulb.

2.Lead forming should be done before soldering.

3.Avoid stressing the LED package during leads forming. The stress to the base may damage the LED's characteristics or it may break the LEDs.

4.Cut the LED lead frames at room temperature. Cutting the lead frames at high temperatures may cause failure of the LEDs.

5. When mounting the LEDs onto a PCB, the PCB holes must be aligned exactly with the lead position of the LED. If the LEDs are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the LEDs.

Soldering

1. Careful attention should be paid during soldering. When soldering, leave more than 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended.

2. Recommended soldering conditions:

Hand Soldering		DIP Soldering		
Temp. at tip of iron	300°C Max. (30W Max.)	Preheat temp.	100°C Max. (60 sec Max.)	
Soldering time	3 sec Max.	Bath temp. & time	260 Max., 5 sec Max	
	3mm Min.(From solder		3mm Min. (From solder joint	
Distance	joint to epoxy bulb)	Distance	to epoxy bulb)	

3. Recommended soldering profile

4. Avoiding applying any stress to the lead frame while the LEDs are at high temperature particularly when soldering.

5. Dip and hand soldering should not be done more than one time

6.After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.

7.A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.

8.Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the LEDs.

9. Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave.

Legal Disclaimer Notice

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

SIVAGO SEMICONDUCTOR CO.,LTD its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "SIVAGO"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

SIVAGO makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, SIVAGO disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on SIVAGO's knowledge of typical requirements that are often placed on SIVAGO products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify SIVAGO's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, SIVAGO products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the SIVAGO product could result in personal injury or death.Customers using or selling SIVAGO products not expressly indicated for use in such applications do so at their own risk.Please contact authorized SIVAGO personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of SIVAGO. Product names and markings noted herein may be trademarks of their respective owners.