OPTO INTERRUPTER LA909

Features

Fast response time

High analytic

Peak wavelength λp=940nm

High sensitivity

Pb free

This product itself will remain within RoHS compliant version.

Application

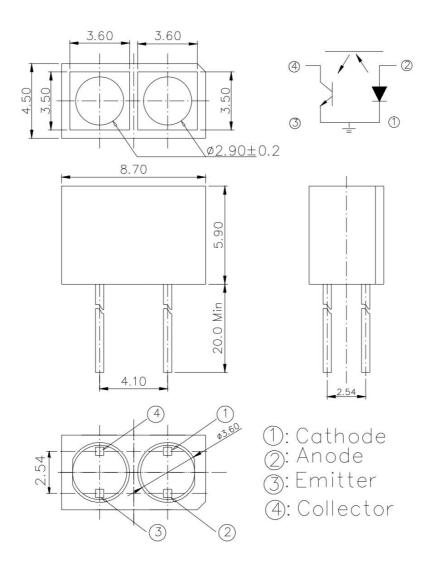
Mouse Copier

Switch Scanner

Floppy disk driver

Non-contact Switching

For Direct Board


Description

The LA909 consist of an infrared emitting diode and an NPN silicon phototransistor, encased side-by-side on converging optical axis in a black thermoplastic housing. The phototransistor does not receive radiation from IR LED in normal situation, but when an object comes closer, the radiation is reflected by the object and phototransistor receives the more radiation as closer the object comes.

PACKAGE DIMENSIONS

NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25mm(.010") unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.

ABSOLUTE MAXIMUM RATINGS AT TA =25°C

ADSOLUTE MAXIMUM RATINGS AT TA-25 C							
	Parameter	Symbol	Ratings	Unit			
Input	Power Dissipation at(or below) 25°C Free	Pd	100	mW			
	Air Temperature	Fu	100				
	Reverse Voltage	V_R	5	V			
	Forward Current	I_{F}	50	mA			
	Peak Forward Current (*1) Pulse width $\leq 100 \mu$ s, Duty cycle=1%	$ m I_{FP}$	1	A			
Output	Collector Power Dissipation	$P_{\rm C}$	100	mW			
	Collector Current	I_{C}	50	mA			
	Collector-Emitter Voltage	B V _{CEO}	30	V			
	Emitter-Collector Voltage	B V _{ECO}	5	V			
Operating Temperature		Topr	-25~+85	$^{\circ}\mathbb{C}$			
Storage Temperature		Tstg	-40~+100	$^{\circ}\mathbb{C}$			
Lead Soldering Temperature (*2) (1/16 inch form body for 5 seconds)		Tsol	260	$^{\circ}\mathbb{C}$			

ELECTRICAL OPTICAL CHARACTERISTICS AT TA=25°C

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions	
Input		$ m V_{F1}$		1.2	1.5		$I_F=20mA$	
	Forward Voltage	V_{F2}		1.4	1.85	V	I_F =100mA,tp=100 μ s,tp/T=0.01	
		V_{F3}		2.6	4.0		I _F =1A,tp=100 μ s,tp/T=0.01	
	Reverse Current	I_R			10	μA	$V_R=5V$	
	Peak Wavelength	λ_P		940		nm	$I_F=20mA$	
	View Angle	201/2		60		Deg	I _F =20mA	
	Dark Current	I_{CEO}		-	100	nA	V _{CE} =20V,Ee=0mW/cm ²	
Output	C-E Saturation			0.4	V	$I_{C}=2mA$		
	Voltage	oltage $V_{CE}(sat)$			0.4	v	,Ee=1mW/cm ²	
Transfer Characteristics	Collect Current I _C (ON	I (ON)	0.2	0.2		mA	$V_{CE}=5V$	
		I _C (ON)	0.2				$I_F=20mA$	
	Rise time	$t_{\rm r}$		15		μ sec	$V_{CE}=5V$	
	Fall time t _f		15		$\mu \sec$	$I_{C}=1mA$		
						$R_L=1K\Omega$		

Typical Electrical/Optical/Characteristics Curves for IR

Fig.1 Forward Current vs.

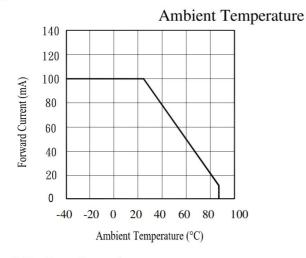


Fig.3 Radiant Intensity vs.

Forward Current

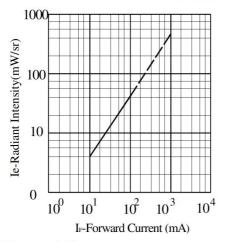


Fig.5 Forward Current vs.

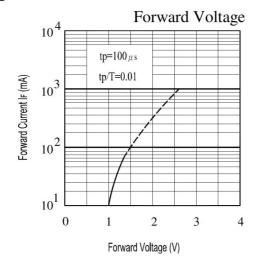


Fig.2 Spectral Distribution

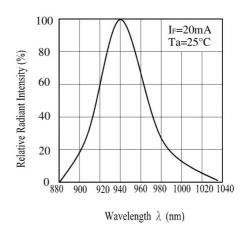


Fig.4 Relative Radiant Intensity vs.

Angular Displacement

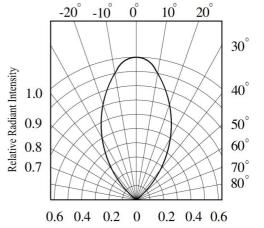
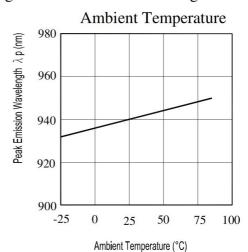



Fig.6 Peak Emission Wavelength

Typical Electrical/Optical/Characteristics Curves for PT

Fig.1 Collector Power Dissipation vs.

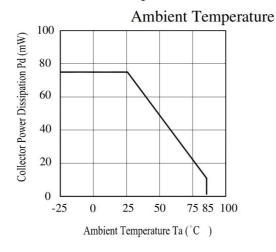


Fig.2 Spectral Sensitivity

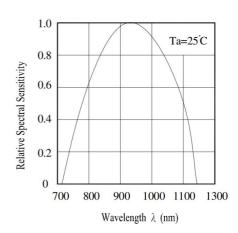


Fig.3 Relative Collector Current vs..

Ambient Temperature

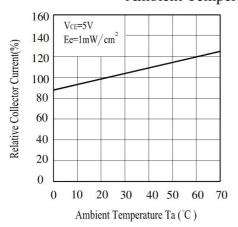


Fig.4 Collector Current vs.

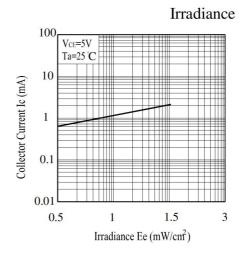
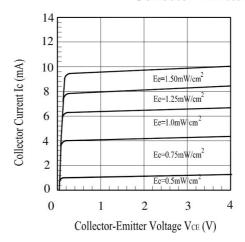



Fig.5 Collector Dark Current vs.

Fig.6 Collector Current vs.

Collector-Emitter Voltage

Packing Quantity Specification

- 1. 200Pcs/1Bag,10 Bag/1Box
- 2. 4Boxes/1Carton

Label Form Specification

· PRODUCT: Part Number

· CODE NO.: Product Serial Number

· QTY: Packing Quantity

· LOT No: Lot Number

· REMARKS:Remarks

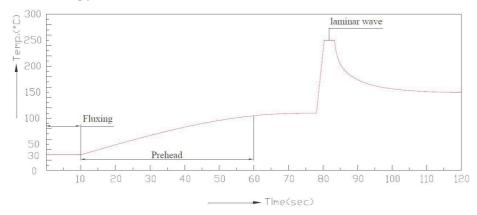
Notes

Lead Forming

1. During lead frame bending, the lead frame should be bent at a distance more than 3mm from bottom of the epoxy.

Note: Must fix lead frame and do not touch epoxy before bending to avoid Photo Interrupter broken.

- 2. Lead forming should be done before soldering.
- 3. Avoid stressing the Photo Interrupter package during leads forming. The stress to the base may damage the characteristics of Photo Interrupter, or it may break the Photo Interrupter.
- 4. Cut the Photo Interrupter lead frame at room temperature. Cutting the lead frame at high temperatures may cause failure of the Photo Interrupter.
- 5. When mounting the Photo Interrupter onto a PCB, the PCB holes must be aligned exactly with the lead position of the Photo Interrupter. If the Photo Interrupter are mounted with stress at The leads, it causes deterioration of the epoxy resin and this will degrade the Photo Interrupter.



Soldering

- 1. Careful attention should be paid during soldering. When soldering, leave more than 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended.
- 2. Recommended soldering conditions:

Hand	d Soldering	DIP Soldering		
Temp. at tip of iron	300°C Max. (30W Max.)	Preheat temp.	100°C Max. (60 sec Max.)	
Soldering time	3 sec Max.	Bath temp. & time	260 Max., 5 sec Max	
	3mm Min.(From solder		3mm Min. (From solder joint	
Distance	joint to epoxy bulb)	Distance	to epoxy bulb)	

3. Recommended soldering profile

- 4. Avoiding applying any stress to the lead frame while the Photo Interrupter are at high temperature particularly when soldering.
- 5. Dip and hand soldering should not be done more than one time
- 6. After soldering the Photo Interrupter, the epoxy bulb should be protected from mechanical shock or vibration until the Photo Interrupter return to room temperature.
- 7. A rapid-rate process is not recommended for cooling the Photo Interrupter down from the peak temperature.
- 8. Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the Photo Interrupter.
- 9. Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave.

Legal Disclaimer Notice

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

SIVAGO SEMICONDUCTOR CO.,LTD its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "SIVAGO"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

SIVAGO makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, SIVAGO disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on SIVAGO's knowledge of typical requirements that are often placed on SIVAGO products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify SIVAGO's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, SIVAGO products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the SIVAGO product could result in personal injury or death. Customers using or selling SIVAGO products not expressly indicated for use in such applications do so at their own risk. Please contact authorized SIVAGO personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of SIVAGO. Product names and markings noted herein may be trademarks of their respective owners.