
Infrared LED ■ Top view 1206 Package

KEL-1T226C-2T

Features

- · 1206 package
- ·Top viewLED
- · Compatible with infrared and vapor phase reflow solder process.
- ·Narrow viewing angle
- ·Pb-free
- · RoHS compliant

Description

The KEL-1T226C-2T package has high efficacy, high power consumption, wide viewing angle and a compact form factor. These features make this package an ideal LED for all lighting applications.

Applications

- · Free air transmission system
- ·Infrared remote control units with high power requirement
- · Smoke detector
- ·Infrared applied system

Device Selection Guide

Chip Materials	Emitted Color	Resin Color
AlGaAs/GaAs	Infrared	Water Clear

Absolute Maximum Ratings (TSoldering=25°C)

Parameter	Symbol	Rating	Unit
Forward Current	lf	100	mA
Peak Forward Current Pulse Width≦100µs ,Duty≦1%.	 FP	1.0	А
Reverse Voltage	VR	5	V
Operating Temperature	Topr	-40 ~ +85	$^{\circ}$
Storage Temperature	Tstg	-40 ~ +100	$^{\circ}$
Power Dissipation at(or below) 25℃Free Air Temperature	Pd	130	mW
Soldering Temperature	Tsol	260℃	$^{\circ}$

Note: *1: IFP Conditions--Pulse Width≦100µs and Duty≦1%.

Electro-Optical Characteristics (Tsoldering=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Radiant Intensity	_	14		36	mW/sr —	I==20mA
	Ee -		90			l _F =100mA Pulse Width≦100μs , Duty≦1%
Forward Voltage	VF —	1.2		1.6	v -	I _F =20mA
			1.8	2.4		I _F =100mA
						Pulse Width≦100µs , Duty≦1%
Peak Wavelength	λр		940		nm	I==20mA
Viewing Angle	20 1/2		15		deg	I==20mA
Reverse Current	lr			10	μΑ	V _R =5V

Notes:

^{*2:} Soldering time≦5 seconds.

^{1.}Tolerance of L Radiant Intensity: ±10%

^{2.}Tolerance of Forward Voltage: ± 0.05V.

Bin Range of Radiant Intensity

	-			
Bin Code	Min.	Max.	Unit	Condition
A12	14	16		
A13	16	20		
A14	20	24	mW/sr	I==20mA
A15	24	30		
A16	30	36		

Note:

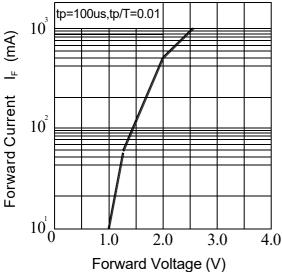
Tolerance of Radiant Intensity: ±10%

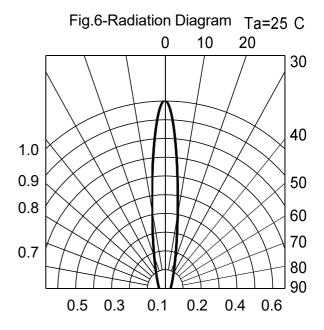
Bin Range of Forward Voltage

Bin Code	Min.	Max.	Unit	Condition
19	1.2	1.3		
20	1.3	1.4	V	I=20mA
21	1.4	1.5	V	IF-ZUITIA
22	1.5	1.6		

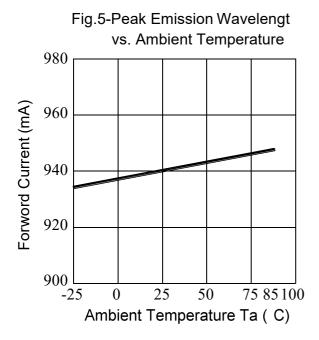
Note:

Tolerance of Forward Voltage: ± 0.05V.

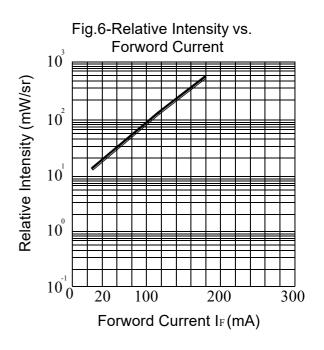

Typical Electro-Optical Characteristics Curves


Fig.1-Forword Current vs.
Ambient Temperature

100
80
40
40
0
-25
0
25
50
75
85
100
Ambient Temperature Ta (C)


Fig.3-Forward Current vs.

Forward Voltage Ta=25 C


Typical Electro-Optical Characteristics Curves

Ambient Temperature Ta=25 C 1.4 1.2

Fig.7-Relative Intensity vs.

Relative Intensity (mW/sr) for I_F=20mA 1.0 0.8 0.6 25 50 -25 75 100 Ambient Temperature Ta (C)

Ambient Temperature Ta=25 C 1.4 Forword Voltage for I_F=20mA 1.3 1.2 1.1

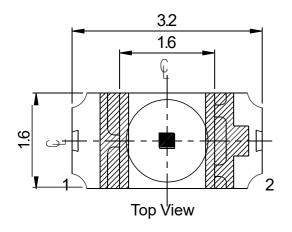
25

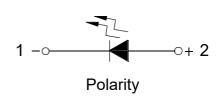
50

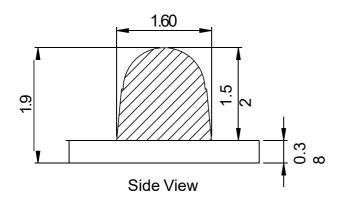
Ambient Temperature Ta (C)

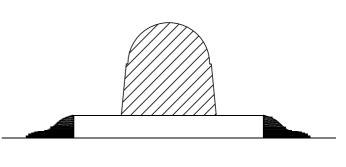
75

100

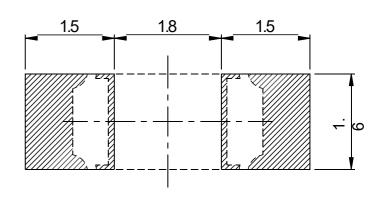

Fig.8-Forword Voltage vs.

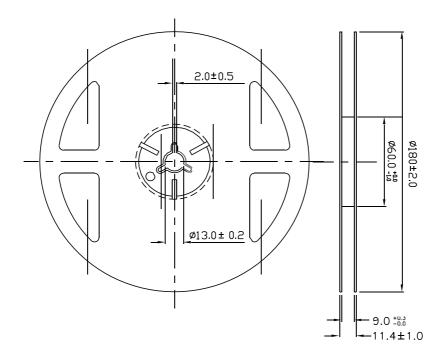

1.0


-25


0

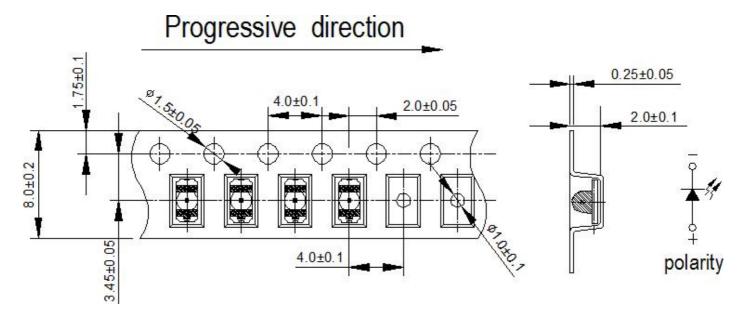
Package Dimension




Recommended Solder Pad

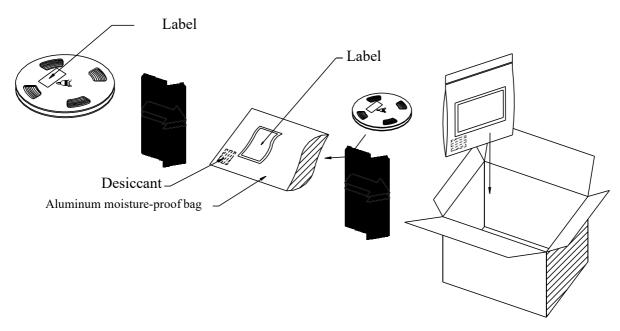
0.6 2.0 0.6 0.6 0.6 1.15 Bottom View

Tolerance unless mentioned is ± 0.1 mm, Unit = mm.


Reel Dimensions

Note:

Tolerances unless mentioned ±0.1mm,Unit = mm.


Carrier Tape Dimensions: Loaded Quantity 2000 pcs Per Reel

Notes:

- 1.Tolerance unless mentioned is ±0.1mm,Unit = mm.
- 2.Minimum packing amount is 1000 pcs per reel.

Moisture Resistant Packing Process

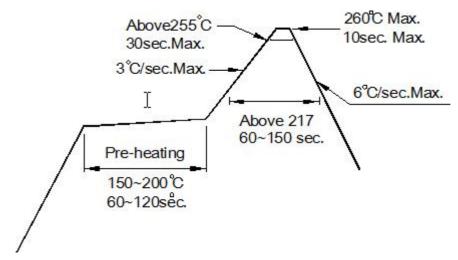
Moisture/Reflow sensitivity classification

IPC / JEDEC J-STD-020C: Level 2

DATASHEET Infrared LED ■ Top view 1206 Package KEL-1T226C-2T

Reliability Test Items and Conditions
The reliability of products shall be satisfied with items listed below.
Confidence level: 90%

LTPD: 10%

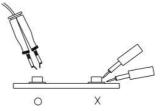

No.	Items	Test Condition	Test Hours/Cycles	Sample Size	Ac/Re
1	Reflow Soldering	Temp. : 260°C/10sec.	6 Min.	22 PCS.	0/1
2	Thermal Shock	H : +100°C 5min ∫ 10 sec L : -10°C 5min	300 Cycles	22 PCS.	0/1
3	Temperature Cycle	H : +100°C 15min ∫ 5 min L : -40°C 15min	300 Cycles	22 PCS.	0/1
4	High Temperature/Humidity Reverse Bias	Ta=85℃,85%RH	1000 Hrs.	22 PCS.	0/1
5	Low Temperature Storage	Ta=-40°C	1000 Hrs.	22 PCS.	0/1
6	High Temperature Storage	Ta=100℃	1000 Hrs.	22 PCS.	0/1
7	DC Operation Life	Ta=25℃, l⊧= 20mA	1000 Hrs.	22 PCS.	0/1

Precautions for Use

1. Over-current-proof

Customer must apply resistors for protection; otherwise slight voltage shift will cause big current change (Burn out will happen).

- 2. Storage
 - 1. Do not open moisture proof bag before the products are ready to use.
 - 2. Before opening the package: The LEDs should be kept at 30°C or less and 90%RH or less.
 - 3. After opening the package: The LED's floor life is 1 year under 30°C or less and 60% RH or less. If unused LEDs remain, it should be stored in moisture proof packages.
 - 4. If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.
 Baking treatment: 60±5°C for 24 hours.
- 3. Soldering Condition
 - 1. Pb-free solder temperature profile



- 2. Reflow soldering should not be done more than two times.
- 3. When soldering, do not put stress on the LEDs during heating.
- 4. After soldering, do not warp the circuit board.
- 4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

