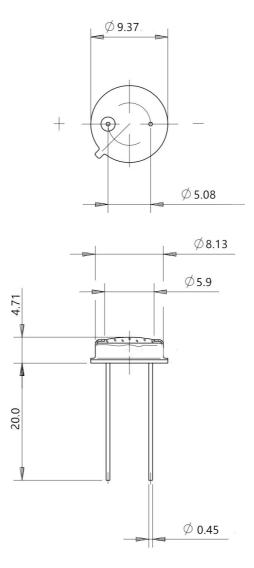
Silicon PIN Photodiode BPW21R

Features

Hermetically sealed TO–5 case Flat glass window with built–in color correction fil-ter for visible radiation Cathode connected to case Wide viewing angle $\varphi = \pm 50$ Large radiant sensitive area (A=7.5 mm2) Suitable for visible radiation High sensitivity Low dark current High shunt resistance Excellent linearity For photodiode and photovoltaic cell operation

Application

Exposure meter for daylight


For artificial light of high color temperature in photographic fields and color analysis Sensor in exposure and color measuring purposes

Description

BPW21R is a planar Silicon PIN photodiode in ahermetically sealed short TO–5 case, especially de-signed for high precision linear applications. Due to its extremely high dark resistance, the short circuit photocurrent is linear over seven decades of il-lumination level. On the other hand, there is a strictly logarithmic correlation between open circuit voltage and illumina tion over the same range. The device is equipped with a flat glass window with built in color correction filter, giving an approximation to the spectral response of the human eye.

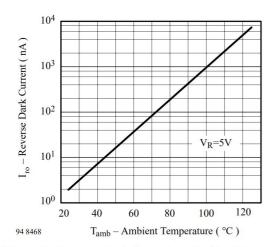
PACKAGE DIMENSIONS

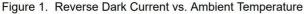
NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25mm(.010") unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.

BPW21R

ABSOLUTE MAXIMUM RATINGS AT TA =25°C


Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V _R	10	V
Power Dissipation	$T_{amb} \leq 50 \ ^{\circ}C$	Pv	300	mW
Junction Temperature		Τį	125	°C
Operating Temperature Range		T _{amb}	-55+125	°C
Storage Temperature Range		T _{stq}	-55+125	°C
Soldering Temperature	t ≦ 5 s	T _{sd}	260	°C
Thermal Resistance Junction/Ambient		R _{thJA}	250	K/W


BASIC CHARACTERISTICS AT TA=25°C

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Forward Voltage	I _F = 50 mA	V _F		1.0	1.3	V
Breakdown Voltage	I _R = 20 μA, E = 0	V _(BR)	10			V
Reverse Dark Current	V _R = 5 V, E = 0	Iro		2	30	nA
Diode Capacitance	V _R = 0 V, f = 1 MHz, E = 0	CD		1.2		nF
	V _R = 5 V, f = 1 MHz, E = 0	CD		400		pF
Dark Resistance	V _R = 10 mV	R _D		38		GΩ
Open Circuit Voltage	E _A = 1 klx	Vo	280	450		mV
Temp. Coefficient of Vo	E _A = 1 klx	TK _{Vo}		-2		mV/K
Short Circuit Current	E _A = 1 klx	l _k	4.5	9		μA
Temp. Coefficient of Ik	E _A = 1 klx	TK _{lk}		-0.05		%/K
Reverse Light Current	E _A = 1 klx, V _R = 5 V	I _{ra}	4.5	9		μA
Sensitivity	$V_R = 5 V, E_A = 10^{-2}10^5 Ix$	S		9		nA/lx
Angle of Half Sensitivity		φ		±50		deg
Wavelength of Peak Sensitivity		λρ		565		nm
Range of Spectral Bandwidth		λ _{0.5}		420675		nm
Rise Time	$V_R = 0 V, R_L = 1k Ω,$ λ = 660 nm	t _r		3.1		μs
Fall Time	$V_R = 0$ V, $R_L = 1$ k Ω, λ = 660 nm	t _f		3.0		μs

Typical Characteristics ($T_{amb} = 25^{\circ}C$ unless otherwise specified)

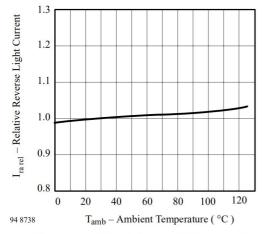


Figure 2. Relative Reverse Light Current vs. Ambient Temperature

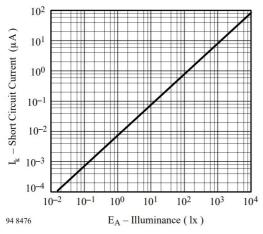


Figure 3. Short Circuit Current vs. Illuminance

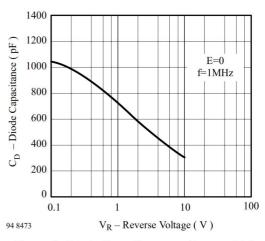


Figure 4. Diode Capacitance vs. Reverse Voltage

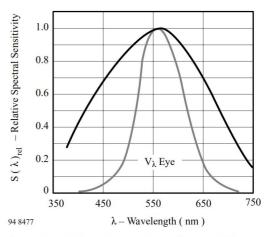


Figure 5. Relative Spectral Sensitivity vs. Wavelength

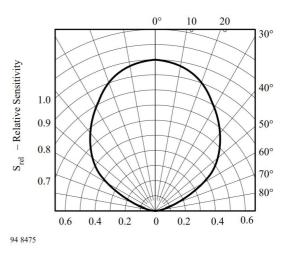


Figure 6. Relative Radiant Sensitivity vs. Angular Displacement

Packing Quantity Specification

- 1. 200Pcs/1Bag,10 Bag/1Box
- 2. 4Boxes/1Carton

Label Form Specification

- · PRODUCT: Part Number
- · CODE NO.: Product Serial Number
- · QTY: Packing Quantity
- · LOT No: Lot Number
- · REMARKS:Remarks

Notes Lead Forming

1. During lead frame bending, the lead frame should be bent at a distance more than 3mm from bottom of the epoxy.

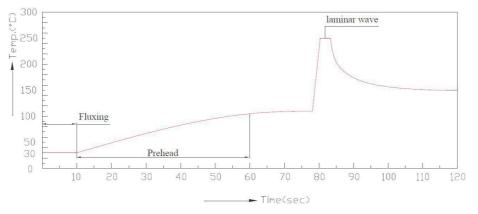
Note: Must fix lead frame and do not touch epoxy before bending to avoid Photodilde broken.

2.Lead forming should be done before soldering.

3.Avoid stressing the Photodode package during leads forming. The stress to the base may damage the Photodiode's characteristics or it may break the Photodiode.

4.Cut the Photodiode lead frame at room temperature. Cutting the lead frame at high temperatures may cause failure of the Photodiode.

5. When mounting the Photodiode onto a PCB, the PCB holes must be aligned exactly with the lead position of the Photodiode. If the Photodiode are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the Photodiode.


Soldering

1. Careful attention should be paid during soldering. When soldering, leave more than 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended.

2. Recommended soldering conditions:

Hand Soldering		DIP Soldering		
Temp. at tip of iron	300°C Max. (30W Max.)	Preheat temp.	100°C Max. (60 sec Max.)	
Soldering time	3 sec Max.	Bath temp. & time	260 Max., 5 sec Max	
	3mm Min.(From solder		3mm Min. (From solder joint	
Distance	joint to epoxy bulb)	Distance	to epoxy bulb)	

3. Recommended soldering profile

4. Avoiding applying any stress to the lead frame while the Photodiode are at high temperature particularly when soldering.

5. Dip and hand soldering should not be done more than one time

6.After soldering the Photodiode, the epoxy bulb should be protected from mechanical shock or vibration until the Photodiode return to room temperature.

7.A rapid-rate process is not recommended for cooling the Photodiode down from the peak temperature.

8.Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the Photodiode.

9. Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave.

Legal Disclaimer Notice

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

SIVAGO SEMICONDUCTOR CO.,LTD its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "SIVAGO"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

SIVAGO makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, SIVAGO disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on SIVAGO's knowledge of typical requirements that are often placed on SIVAGO products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify SIVAGO's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, SIVAGO products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the SIVAGO product could result in personal injury or death.Customers using or selling SIVAGO products not expressly indicated for use in such applications do so at their own risk.Please contact authorized SIVAGO personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of SIVAGO. Product names and markings noted herein may be trademarks of their respective owners.